losses namespace that contains a couple of useful losses in machine learning
More...
|
double | recall (const std::vector< double > &y, const std::vector< double > &y_pred) |
| recall function[tp / tp + fn]
|
|
double | accuracy_score (const std::vector< double > &y, const std::vector< double > &y_pred) |
| accuracy score function[(tp + tn) / (tp + tn + fp + fn)]
|
|
double | precision (const std::vector< double > &y, const std::vector< double > &y_pred) |
| precision function[tp / tp + fp]
|
|
double | f1_score (const std::vector< double > &y, const std::vector< double > &y_pred) |
| f1 score function: [2 * precision * recall / precision + recall]
|
|
double | euclidean_distance (const std::vector< double > &x, const std::vector< double > &y) |
| euclidean distance function
|
|
double | manhattan_distance (const std::vector< double > &x, const std::vector< double > &y) |
| manhattan distance function
|
|
double | minkowski_distance (const std::vector< double > &x, const std::vector< double > &y, const double p) |
| minkowski distance
|
|
losses namespace that contains a couple of useful losses in machine learning
◆ accuracy_score()
double metrics::accuracy_score |
( |
const std::vector< double > & | y, |
|
|
const std::vector< double > & | y_pred ) |
|
inline |
accuracy score function[(tp + tn) / (tp + tn + fp + fn)]
- Returns
- double
◆ euclidean_distance()
double metrics::euclidean_distance |
( |
const std::vector< double > & | x, |
|
|
const std::vector< double > & | y ) |
|
inline |
euclidean distance function
- Parameters
-
x(vector<double>) | the first passed vector |
y(vector<double>) | the second passed vector |
- Returns
- double
◆ f1_score()
double metrics::f1_score |
( |
const std::vector< double > & | y, |
|
|
const std::vector< double > & | y_pred ) |
|
inline |
f1 score function: [2 * precision * recall / precision + recall]
- Returns
- double
◆ manhattan_distance()
double metrics::manhattan_distance |
( |
const std::vector< double > & | x, |
|
|
const std::vector< double > & | y ) |
|
inline |
manhattan distance function
- Parameters
-
x(vector<double>) | the first passed vector |
y(vector<double>) | the secoond passed vector |
- Returns
- double
◆ minkowski_distance()
double metrics::minkowski_distance |
( |
const std::vector< double > & | x, |
|
|
const std::vector< double > & | y, |
|
|
const double | p ) |
|
inline |
minkowski distance
- Parameters
-
x(vector<double>) | the first passed vector |
y(vector<double>) | the second passed vector |
p(double) | The order of the norm of the difference |
- Returns
- double
◆ precision()
double metrics::precision |
( |
const std::vector< double > & | y, |
|
|
const std::vector< double > & | y_pred ) |
|
inline |
precision function[tp / tp + fp]
- Returns
- double
◆ recall()
double metrics::recall |
( |
const std::vector< double > & | y, |
|
|
const std::vector< double > & | y_pred ) |
|
inline |
recall function[tp / tp + fn]
- Returns
- double