AlgoPlus v0.1.0
Loading...
Searching...
No Matches
metrics Namespace Reference

losses namespace that contains a couple of useful losses in machine learning More...

Functions

double recall (const std::vector< double > &y, const std::vector< double > &y_pred)
 recall function[tp / tp + fn]
 
double accuracy_score (const std::vector< double > &y, const std::vector< double > &y_pred)
 accuracy score function[(tp + tn) / (tp + tn + fp + fn)]
 
double precision (const std::vector< double > &y, const std::vector< double > &y_pred)
 precision function[tp / tp + fp]
 
double f1_score (const std::vector< double > &y, const std::vector< double > &y_pred)
 f1 score function: [2 * precision * recall / precision + recall]
 
double euclidean_distance (const std::vector< double > &x, const std::vector< double > &y)
 euclidean distance function
 
double manhattan_distance (const std::vector< double > &x, const std::vector< double > &y)
 manhattan distance function
 
double minkowski_distance (const std::vector< double > &x, const std::vector< double > &y, const double p)
 minkowski distance
 

Detailed Description

losses namespace that contains a couple of useful losses in machine learning

Function Documentation

◆ accuracy_score()

double metrics::accuracy_score ( const std::vector< double > & y,
const std::vector< double > & y_pred )
inline

accuracy score function[(tp + tn) / (tp + tn + fp + fn)]

Returns
double

◆ euclidean_distance()

double metrics::euclidean_distance ( const std::vector< double > & x,
const std::vector< double > & y )
inline

euclidean distance function

Parameters
x(vector<double>)the first passed vector
y(vector<double>)the second passed vector
Returns
double

◆ f1_score()

double metrics::f1_score ( const std::vector< double > & y,
const std::vector< double > & y_pred )
inline

f1 score function: [2 * precision * recall / precision + recall]

Returns
double

◆ manhattan_distance()

double metrics::manhattan_distance ( const std::vector< double > & x,
const std::vector< double > & y )
inline

manhattan distance function

Parameters
x(vector<double>)the first passed vector
y(vector<double>)the secoond passed vector
Returns
double

◆ minkowski_distance()

double metrics::minkowski_distance ( const std::vector< double > & x,
const std::vector< double > & y,
const double p )
inline

minkowski distance

Parameters
x(vector<double>)the first passed vector
y(vector<double>)the second passed vector
p(double)The order of the norm of the difference
Returns
double

◆ precision()

double metrics::precision ( const std::vector< double > & y,
const std::vector< double > & y_pred )
inline

precision function[tp / tp + fp]

Returns
double

◆ recall()

double metrics::recall ( const std::vector< double > & y,
const std::vector< double > & y_pred )
inline

recall function[tp / tp + fn]

Returns
double